I walk in a commercial area I have not been in before and pass by an Arrow Exterminators, a pest control company. I have had issues with cockroaches in the past. Apparently, there is a species commonly called a tree roach, and if you have trees near your front or back door, they can crawl right in. In a previous house I had squirrels in the attic and was told to wipe down the area where they were entering with fox urine. I could actually buy fox urine in a bottle at the local seed and feed store. In my current abode, I have had rats in the attic and outside in a fenced-in garden area right off my sunroom/breakfast room. On my neighbor’s advice, I bought large, spring-loaded black plastic rat traps and baited them with peanut butter. Killed 13 rats over a 2-3 week period. I realized that the rats had a food source in my bird feeder in that garden. So, a few weeks later when I looked out at the garden around dusk one day and saw four or five rats doing somersaults, I decided it was time to quit feeding the birds. Shortly after I did, a close neighbor in my townhouses complained of rats. Guess there was a better buffet over there. That is the extent of my knowledge about pest control. Let’s find out more.
According to Wikipedia, pest control is the regulation or management of a species defined as a pest, a member of the animal kingdom that impacts adversely on human activities. The human response depends on the importance of the damage done and will range from tolerance, through deterrence and management, to attempts to completely eradicate the pest. Pest control measures may be performed as part of an integrated pest management strategy.
In agriculture, pests are kept at bay by cultural, chemical and biological means. Plowing and cultivation of the soil before sowing mitigate the pest burden, and there is a modern trend to limit the use of pesticides as far as possible. This can be achieved by monitoring the crop, only applying insecticides when necessary, and by growing varieties and crops which are resistant to pests. Where possible, biological means are used, encouraging the natural enemies of the pests and introducing suitable predators or parasites.
In homes and urban environments, the pests are the rodents, birds, insects and other organisms that share the habitat with humans, and that feed on and spoil possessions. Control of these pests is attempted through exclusion, repulsion, physical removal or chemical means. Alternatively, various methods of biological control can be used including sterilization programs.
History
Pest control is at least as old as agriculture, as there has always been a need to keep crops free from pests. As long ago as 3000 BC in Egypt, cats were used to control pests of grain stores such as rodents. Ferrets were domesticated by 500 AD in Europe for use as mousers. Mongooses were introduced into homes to control rodents and snakes, probably by the ancient Egyptians.
The conventional approach was probably the first to be employed, since it is comparatively easy to destroy weeds by burning them or plowing them under, and to kill larger competing herbivores. Techniques such as crop rotation, companion planting — also known as intercropping or mixed cropping and the selective breeding of pest-resistant cultivars have a long history.
Chemical pesticides were first used around 2500 BC, when the Sumerians used sulphur compounds as insecticides. Modern pest control was stimulated by the spread across the United States of the Colorado potato beetle. After much discussion, arsenical compounds were used to control the beetle and the predicted poisoning of the human population did not occur. This led the way to a widespread acceptance of insecticides across the continent. With the industrialization and mechanization of agriculture in the 18th and 19th centuries, and the introduction of the insecticides pyrethrum and derris, chemical pest control became widespread. In the 20th century, the discovery of several synthetic insecticides, such as DDT, and herbicides boosted this development.
Biological control is first recorded around 300 AD in China, when colonies of weaver ants, Oecophylla smaragdina, were intentionally placed in citrus plantations to control beetles and caterpillars. Also in China, ducks were used in paddy fields to consume pests, as illustrated in ancient cave art. In 1762, an Indian mynah was brought to Mauritius to control locusts, and about the same time, citrus trees in Burma were connected by bamboos to allow ants to pass between them and help control caterpillars. In the 1880s, ladybirds were used in citrus plantations in California to control scale insects, and other biological control experiments followed. The introduction of DDT — a cheap and effective compound — put an effective stop to biological control experiments. By the 1960s, problems of resistance to chemicals and damage to the environment began to emerge, and biological control had a renaissance. Chemical pest control is still the predominant type of pest control today, although a renewed interest in traditional and biological pest control developed towards the end of the 20th century and continues to this day.
Biological pest control
Biological pest control is a method of controlling pests such as insects and mites by using other organisms. It relies on predation, parasitism, herbivory or other natural mechanisms, but typically also involves an active human management role. Classical biological control involves the introduction of natural enemies of the pest that are bred in the laboratory and released into the environment. An alternative approach is to augment the natural enemies that occur in a particular area by releasing more — either in small, repeated batches or in a single large-scale release. Ideally, the released organism will breed and survive, and provide long-term control. Biological control can be an important component of an integrated pest management program. For example: mosquitoes are often controlled by putting Bt Bacillus thuringiensis ssp. israelensis — a bacterium that infects and kills mosquito larvae — in local water sources.
Cultural control
Mechanical pest control is the use of hands-on techniques as well as simple equipment and devices, that provides a protective barrier between plants and insects. This is referred to as tillage and is one of the oldest methods of weed control as well as being useful for pest control; wireworms — the larvae of the common click beetle — are very destructive pests of newly plowed grassland and repeated cultivation exposes them to the birds and other predators that feed on them.
Crop rotation can help to control pests by depriving them of their host plants. It is a major tactic in the control of corn rootworm and has reduced early season incidence of the Colorado potato beetle by as much as 95%.
Trap cropping
A trap crop is a crop of a plant that attracts pests, diverting them from nearby crops. Pests aggregated on the trap crop can be more easily controlled using pesticides or other methods. However, trap-cropping on its own has often failed to cost effectively reduce pest densities on large commercial scales without the use of pesticides, possibly due to the pests' ability to disperse back into the main field.
Examples of trap crops include:
- Alfalfa planted in strips among cotton, to draw away lygus bugs, while castor beans surround the field, or tobacco planted in strips among it, to protect from the budworm Heliothis.
- Rose enthusiasts often plant Pelargonium geraniums among their rosebushes because Japanese beetles are drawn to the geraniums, which are toxic to them.
- Chervil is used by gardeners to protect vegetable plants from slugs.
- Rye, sesbania and sicklepod are used to protect soybeans from corn seeding maggots, stink bugs and velvet green caterpillars, respectively.
- Mustard and alfalfa planted near strawberries to attract lygus bugs, a method pioneered by Jim Cochran.
- Blue Hubbard squash is planted near cucurbit crops to attract squash vine borer, squash bugs and both spotted and striped Cucumber beetle.
Pesticides
Pesticides are applied to crops by agricultural aircraft, tractor-mounted crop sprayers, aerial spray by modern aircraft or as seed dressings to control pests. However, successful control by pesticides is not easy; the right formulation must be chosen. The timing is often critical; the method of application is important. Adequate coverage and retention on the crop are necessary. The killing of natural enemies of the target pest should be minimized. This is particularly important in countries where there are natural reservoirs of pests and their enemies in the countryside surrounding plantation crops, and these co-exist in a delicate balance. Often in less developed countries, the crops are well-adapted to the local situation, and no pesticides are needed. Where progressive farmers are using fertilizers to grow improved crop varieties, these are often more susceptible to pest damage, but the indiscriminate application of pesticides may be detrimental in the longer term.
The efficacy of chemical pesticides tends to diminish over time. This is because any organism that manages to survive the initial application will pass on its genes to its offspring and a resistant strain will be developed. In this way, some of the most serious pests have developed resistance and are no longer killed by pesticides that used to kill their ancestors. This necessitates higher concentrations of chemical, more frequent applications and a movement to more expensive formulations.
Pesticides are formulated to kill pests, but many have detrimental effects on non-target species; of particular concern is the damage done to honey bees, solitary bees and other pollinating insects and in this regard, the time of day when the spray is applied can be important. The widely used neonicontinoids have been banned on flowering crops in some countries because of their effects on bees. Some pesticides may cause cancer and other health problems in humans, as well as being harmful to wildlife. There can be acute effects immediately after exposure or chronic effects after continuous low-level or occasional exposure. Maximum residue limits for pesticides in foodstuffs and animal feed are set by many nations.
Hunting
Pest control can also be achieved via culling the pest animals — generally small- to medium-sized wild or feral mammals or birds that inhabit the ecological niches near farms, pastures or other human settlements — by employing human hunters or trappers to physically track down, kill and remove them from the area. The culled animals — known as vermin — may be targeted because they are deemed harmful to agricultural crops, livestock or facilities; serve as hosts or vectors that transmit pathogens across species or to humans; or for population control as a means of protecting other vulnerable species and ecosystems.
Pest control via hunting, like all forms of harvest, has imposed an artificial selective pressure on the organisms being targeted. While varmint hunting is potentially selecting for desired behavioral and demographic changes — e.g., animals avoiding human populated areas, crops and livestock — it can also result in unpredicted outcomes such as the targeted animal adapting for faster reproductive cycles. Overhunting of passenger pigeons as depicted in the contemporary wood engraving above resulted in complete extinction of the species.
Forestry
Forest pests present a significant problem because it is not easy to access the canopy and monitor pest populations. In addition, forestry pests such as bark beetles — kept under control by natural enemies in their native range — may be transported large distances in cut timber to places where they have no natural predators, enabling them to cause extensive economic damage. Pheromone traps have been used to monitor pest populations in the canopy. These release volatile chemicals that attract males. Pheromone traps can detect the arrival of pests or alert foresters to outbreaks. For example, the spruce budworm — a destructive pest of spruce and balsam fir — has been monitored using pheromone traps in Canadian forests for several decades. In some regions, such as New Brunswick, areas of forest are sprayed with pesticide to control the budworm population and prevent the damage caused during outbreaks.
Physical pest control
Physical pest control involves trapping or killing pests such as insects and rodents. Historically, local people or paid rat-catchers caught and killed rodents using dogs and traps. On a domestic scale, sticky flypapers are used to trap flies. In larger buildings, insects may be trapped using such means as pheromones, synthetic volatile chemicals or ultraviolet light to attract the insects; some have a sticky base or an electrically charged grid to kill them. Glueboards are sometimes used for monitoring cockroaches and to catch rodents. Rodents can be killed by suitably baited spring traps and can be caught in cage traps for relocation. Talcum powder or "tracking powder" can be used to establish routes used by rodents inside buildings, and acoustic devices can be used for detecting beetles in structural timbers.
Historically, firearms have been one of the primary methods used for pest control. "Garden guns" are smooth bore shotguns specifically made to fire .22 caliber snake shot or 9mm Flobert and are commonly used by gardeners and farmers for snakes, rodents, birds and other pests. Garden guns are short-range weapons that can do little harm past 15 to 20 yards, and they're relatively quiet when fired with snake shot, compared to standard ammunition. These guns are especially effective inside barns and sheds, as the snake shot will not shoot holes in the roof or walls, or more importantly, injure livestock with a ricochet. They are also used for pest control at airports, warehouses, stockyards, etc.
The most common shot cartridge is .22 long rifle loaded with No. 12 shot. At a distance of about 10 feet — which is about the maximum effective range — the pattern is about 8 inches in diameter from a standard rifle. Special smoothbore shotguns — such as the Marlin Model 25MG — can produce effective patterns out to 15 or 20 yards using .22 WMR shotshells, which hold 1/8 oz. of No. 12 shot contained in a plastic capsule.
Poisoned bait
Poisoned bait is a common method for controlling rats, mice, birds, slugs, snails, ants, cockroaches and other pests. The basic granules or other formulation contains a food attractant for the target species and a suitable poison. For ants, a slow-acting toxin is needed so that the workers have time to carry the substance back to the colony, and for flies, a quick-acting substance to prevent further egg-laying and nuisance. Baits for slugs and snails often contain the molluscide metaldehyde, dangerous to children and household pets.
Warfarin has traditionally been used to kill rodents, but many populations have developed resistance to this anticoagulant, and difenacoum may be substituted. These are cumulative poisons, requiring bait stations to be topped up regularly. Poisoned meat has been used for centuries to kill animals such as wolves and birds of prey. Poisoned carcasses however kill a wide range of carrion feeders, not only the targeted species. Raptors in Israel were nearly wiped out following a period of intense poisoning of rats and other crop pests.
Fumigation
Fumigation is the treatment of a structure to kill pests such as wood-boring beetles by sealing it or surrounding it with an airtight cover such as a tent, and fogging with liquid insecticide for an extended period, typically 24–72 hours. This is costly and inconvenient as the structure cannot be used during the treatment, but it targets all life stages of pests.
An alternative space treatment is fogging or misting to disperse a liquid insecticide in the atmosphere within a building without evacuation or airtight sealing, allowing most work within the building to continue, at the cost of reduced penetration. Contact insecticides are generally used to minimize long-lasting residual effect.
Sterilization
Populations of pest insects can sometimes be dramatically reduced by the release of sterile individuals. This involves the mass rearing of a pest, sterilizing it by means of X-rays or some other means and releasing it into a wild population. It is particularly useful where a female only mates once and where the insect does not disperse widely. This technique has been successfully used against the New World screw-worm fly, some species of tsetse fly, tropical fruit flies, the pink bollworm and the codling moth, among others.
Laboratory studies conducted with U-5897 (3-chloro-1,2-propanediol) were attempted in the early 1970s for rat control, although these proved unsuccessful. In 2013, New York City tested sterilization traps, demonstrating a 43% reduction in rat populations. The product ContraPest was approved for the sterilization of rodents by the United States Environmental Protection Agency in August 2016.
Insulation
Boron, a known pesticide, can be impregnated into the paper fibers of cellulose insulation at certain levels to achieve a mechanical kill factor for self-grooming insects such as ants, cockroaches, termites and more. The addition of insulation into the attic and walls of a structure can provide control of common pests in addition to known insulation benefits such as robust thermal envelope and acoustic noise-canceling properties. The EPA regulates this type of general-use pesticide within the United States allowing it to only be sold and installed by licensed pest management professionals as part of an integrated pest management program. Simply adding Boron or an EPA-registered pesticide to an insulation does not qualify it as a pesticide. The dosage and method must be carefully controlled and monitored.
Natural rodent control
Several wildlife rehabilitation organizations encourage natural form of rodent control through exclusion and predator support and preventing secondary poisoning altogether. The United States Environmental Protection Agency notes in its Proposed Risk Mitigation Decision for Nine Rodenticides that "without habitat modification to make areas less attractive to commensal rodents, even eradication will not prevent new populations from recolonizing the habitat." The U.S. EPA has prescribed guidelines for natural rodent control and for safe trapping in residential areas with subsequent release to the wild. People sometimes attempt to limit rodent damage using repellents. Balsam fir oil from the tree Abies balsamea is an EPA approved non-toxic rodent repellent. Acacia polyacantha subspecies campylacantha root emits chemical compounds that repel animals including rats.
Pantry pests
Insect pests including the Mediterranean flour moth, Indian mealmoth, cigarette beetle, drugstore beetle, confused flour beetle, red flour beetle, merchant grain beetle, sawtoothed grain beetle, wheat weevil, maize weevil and rice weevil infest stored dry foods such as flour, cereals and pasta.
In the home, foodstuffs found to be infested are usually discarded and storing such products in sealed containers should prevent the problem from reoccurring. The eggs of these insects are likely to go unnoticed, with the larvae being the destructive life stage, and the adult the most noticeable stage. Since pesticides are not safe to use near food, alternative treatments such as freezing for four days at 0 °F or baking for half an hour at 130 °F should kill any insects present.
Clothes moths
The larvae of clothes moths — mainly Tineola bisselliella and Tinea pellionella —feed on fabrics and carpets, particularly those that are stored or soiled. The adult females lay batches of eggs on natural fibers, including wool, silk and fur, as well as cotton and linen in blends. The developing larvae spin protective webbing and chew into the fabric, creating holes and specks of excrement. Damage is often concentrated in concealed locations, under collars and near seams of clothing, in folds and crevices in upholstery and around the edges of carpets as well as under furniture. Methods of control include using airtight containers for storage, periodic laundering of garments, trapping, freezing, heating and the use of chemicals; mothballs contain volatile insect repellents such as 1,4-dichlorobenzene which deter adults, but to kill the larvae, permethrin, pyrethroids or other insecticides may need to be used.
Carpet beetles
Carpet beetles are members of the family Dermestidae, and while the adult beetles feed on nectar and pollen, the larvae are destructive pests in homes, warehouses and museums. They feed on animal products including wool, silk, leather, fur, bristles of hairbrushes, pet hair, feathers and museum specimens. They tend to infest hidden locations and may feed on larger areas of fabrics than do clothes moths, leaving behind specks of excrement and brown, hollow, bristly-looking cast skins. Management of infestations is difficult and is based on exclusion and sanitation where possible, resorting to pesticides when necessary. The beetles can fly in from outdoors and the larvae can survive on lint fragments, dust and inside the bags of vacuum cleaners. In warehouses and museums, sticky traps baited with suitable pheromones can be used to identify problems, and heating, freezing, spraying the surface with insecticide and fumigation will kill the insects when suitably applied. Susceptible items can be protected from attack by keeping them in clean airtight containers.
Bookworms
Books are sometimes attacked by cockroaches, silverfish, book mites, booklice and various beetles which feed on the covers, paper, bindings and glue. They leave behind physical damage in the form of tiny holes as well as staining from their feces. Book pests include the larder beetle, and the larvae of the black carpet beetle and the drugstore beetle which attack leather-bound books, while the common clothes moth and the brown house moth attack cloth bindings. These attacks are largely a problem with historic books, because modern bookbinding materials are less susceptible to this type of damage.
Evidence of attack may be found in the form of tiny piles of book dust and specks of excrement. Damage may be concentrated in the spine, the projecting edges of pages and the cover. Prevention of attack relies on keeping books in cool, clean, dry positions with low humidity, and occasional inspections should be made. Treatment can be by freezing for lengthy periods, but some insect eggs are very resistant and can survive for long periods at low temperatures.
Beetles
Various beetles in the Bostrichoidea superfamily attack the dry, seasoned wood used as structural timber in houses and to make furniture. In most cases, it is the larvae that do the damage; these are invisible from the outside of the timber but are chewing away at the wood in the interior of the item. Examples of these are the powderpost beetles which attack the sapwood of hardwoods and furniture beetles which attack softwoods, including plywood. The damage has already been done by the time the adult beetles bore their way out, leaving neat round holes behind them. The first that a householder knows about the beetle damage is often when a chair leg breaks off or a piece of structural timber caves in. Prevention is through chemical treatment of the timber prior to its use in construction or in furniture manufacture.
Termites
Termites with colonies in close proximity to houses can extend their galleries underground and make mud tubes to enter homes. The insects keep out of sight and chew their way through structural and decorative timbers, leaving the surface layers intact, as well as through cardboard, plastic and insulation materials. Their presence may become apparent when winged insects appear and swarm in the home in spring. Regular inspection of structures by a trained professional may help detect termite activity before the damage becomes substantial.; inspection and monitoring of termites is important because termite alates or winged reproductives may not always swarm inside a structure. Control and extermination is a professional job involving trying to exclude the insects from the building and trying to kill those already present. Soil-applied liquid termiticides provide a chemical barrier that prevents termites from entering buildings, and lethal baits can be used; these are eaten by foraging insects and carried back to the nest and shared with other members of the colony, which goes into slow decline.
Mosquitoes
Mosquitoes are midge-like flies in the family Culicidae. Females of most species feed on blood and some act as vectors for malaria and other diseases. Historically, they have been controlled by use of DDT and other chemical means, but since the adverse environmental effects of these insecticides have been realized, other means of control have been attempted. The insects rely on water in which to breed and the first line of control is to reduce possible breeding locations by draining marshes and reducing accumulations of standing water. Other approaches include biological control of larvae by the use of fish or other predators, genetic control, introduction of pathogens, growth-regulating hormones, release of pheromones and mosquito trapping.
On airfields
Birds are a significant hazard to aircraft, but it is difficult to keep them away from airfields. Several methods have been explored. Stunning birds by feeding them a bait containing stupefying substances has been tried, and it may be possible to reduce their numbers on airfields by reducing the number of earthworms and other invertebrates by soil treatment. Leaving the grass long on airfields rather than mowing it is also a deterrent to birds. Sonic nets are being tried; these produce sounds that birds find distracting and seem effective at keeping birds away from affected areas.
Nuisance wildlife management
Nuisance wildlife management is the term given to the process of selective removal of problem individuals or populations of specific species of wildlife. Other terms for the field include wildlife damage management, wildlife control and animal damage control to name a few. Some species of wildlife may become habituated to humans’ presence, causing property damage or risking transfer of disease to humans or pets. Many wildlife species coexist with humans very successfully, such as commensal rodents which have become more or less dependent on humans.
Typically, species that are most likely to be considered a nuisance by humans have the following characteristics. First, they are adaptable to fragmented habitat. Animals such as Canada geese love ponds with low sloping banks leading to lush green grass. Humans love this sort of landscaping too, so it is not surprising that Canada geese have thrived, not to mention the decline in hunting.
Second, these animals are not tied to eating a specific type of food. For example, lynx do not thrive in human-impacted environments because they rely so heavily on snowshoe hares. In contrast, raccoons have been very successful in urban landscapes because they can live in attics, chimneys and even sewers, and can sustain themselves with food gained from trashcans and discarded litter.
Third, successful animals must not pose an obvious significant risk to human health and safety. Animals perceived as grave threats will incur the extreme ire of humans and be under constant threat of humans seeking to eliminate them.
Finally, successful animals in humanized landscapes are often perceived as "cute," at least until they become so numerous that their preferential status becomes diminished. Many wildlife species have the potential of becoming a "nuisance" species, and whether or not a species is regarded as a pest can be directly correlated with the degree to which that animal can be tolerated by humans. For many people, tree squirrels feeding in their yards or gardens are not a problem; a neighbor may feel that these same squirrels nesting in the attic of their house are a nuisance and a fire hazard, due to their habit of gnawing on electrical cables.
Common wildlife pests include armadillos, skunks, boars, foxes, squirrels, snakes, rats, groundhogs, beavers, opossums, raccoons, bats, moles, deer, mice, coyotes, bears, ravens, seagulls, woodpeckers and pigeons. Some of these species are protected by state or federal regulations, such as bears, ravens, bats, deer, woodpeckers and coyotes, and a permit may be required to control some species.
Wildlife are usually only pests in certain situations, such as when their numbers become "excessive" in a particular area. Human-induced changes in the environment will often result in increased numbers of a species. For example, piles of scrap building material make excellent sites where rodents can nest. Food left out for household pets is often equally attractive to some wildlife species. In these situations, the wildlife have suitable food and habitat and may become a nuisance.
Comentários